
Presentation of
“An Empirical Study of Operating

System Errors”
Lucas Panjer

September 21, 2006

Summary

• Study of collected coding “errors” generated by
automatic checkers

• Errors are predefined common coding errors
• 12 checkers
• Purposely ignored implementation details of checkers
• Validity of errors is unknown

Topics of Analysis

• Where are the bugs?
• How are bugs distributed?
• How long do bugs live?
• How do bugs cluster?

Where are the bugs?

• Majority of code is drivers (~50-70%)
• Most errors are in drivers code
• Detected errors correlate with large functions

How are bugs distributed?

• Long tail distribution
• Log series distribution

for all checkers except
Block

• Yule distribution for
Block (longer tail/higher
clustering)

• Uses file as the unit for aggregating error count
• Also tried using a standardized chunking method
• More work necessary, seems like significant clustering
could exist

How long do bugs live?

• Analysis of distribution
through time

How long do bugs live?

• 40-60% of bugs introduced in current
year, remaining are older

• Interesting facts can be gleaned easily
– How many bugs shared between versions
– Number of bugs introduced in a version

How long do bugs live?

• Bugs detected as born at version in which
they appear, death occurs at first version in
which they are no longer present

• Misses bugs that live only between versions
(Overestimates)

• Misses bugs that start between versions or
end well after versions (Underestimates)

How long do bugs live?

• Kaplan-Meier method used to estimate
censored data

• Expectancy calculated at 1.8yrs,
median 1.25yrs

• Code does harden
– Older files have lower error rate
– Newest quartile is 2x older quartile

How do bugs cluster?

• Metric: Variance to the mean

How do bugs cluster?

• Many errors found to be isolated mistakes
• Minimal to no clustering on most checkers
• Null and Inull show minimal clustering

– Seems to imply incomplete knowledge of APIs or
“cut and paste”

• Block shows more clustering
– Seems to imply that programmers are unaware of

this mistake

How do bugs cluster?

• Lots of hypotheses
– Inexperienced programmers
– Ignorance to rules or conventions
– Working code seen as correct code

Comparison with OpenBSD

• Higher rate of errors OpenBSD
• Fewer occurrences of errors OpenBSD
• Very preliminary results

Contributions

• Many errors/bugs fixed in Linux
• Unusual to analyze only the bug

detection tool output, many studies
focus on the checkers

• Surprised by lack of clustering results
• Lots of questions and conjecture

Issues

– If a tree falls in the forest… ?
– If a bug is squished before it bites… ?
– Are “errors” bugs… ?

– Only covers low level operations
– Interference, control, validation?
– Selection of code base?
– Accessibility?

