Presentation of

“An Empirical Study of Operating
System Errors”

Lucas Panjer
September 21, 2006



Summary

Study of collected coding “errors” generated by
automatic checkers

Errors are predefined common coding errors

12 checkers

Purposely ignored implementation detalls of checkers
Validity of errors is unknown

[Check | Nbugs | Fule checkes —

206 + BT

Bluci
Null
Var

Float
Reaml
Param
Size

b avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held.

124 + 267 | Check potentially NULL poioters returned from routines,

33 + 69
6l

54

26

7

17

10 + 15
10+ 1

3

Do not allocate large stack variables (> 1K) on the fixed-gize kernel stack.

[ not make inconmstent assumptions about whether & pointer is NULL.

Always check bounds of array indices and loop bounds derived from user data
Release acquired locks; do not double-acquire locks

Restore disshled interrupts.

Do not use freed memory.

Do not use Aoating point in the kernel,

Do not leak memory by updating pointers with potentially NULL realloc return values.

| Do not dereference user pointers.

Allocate enough memory to bold the type for which you are allocating.




Topics of Analysis

Where are the bugs?
How are bugs distributed?
How long do bugs live?
How do bugs cluster?



Where are the bugs?

Number of Ermors per Dircctory in Linux L ——— 4 to Other Direciories

g
&
E.
_g
i

other archflE6 net

* Majority of code is drivers (~50-70%)
e Most errors are in drivers code
« Detected errors correlate with large functions



How are bugs distributed?

Al bugs in 2.4 1 axcest Block

 Long tail distribution

* Log series distribution
for all checkers except
Block

* Yule distribution for
Block (longer tail/nigher
clustering)

» Uses file as the unit for aggregating error count

e Also tried using a standardized chunking method

* More work necessary, seems like significant clustering
could exist

0.4 06

02

:
&
g
:
:
¢

(Tors) 245 R 380 weres)




How long do bugs live?

L et & Bugis Across Selecied Vemions

« Analysis of distribution
through time

= lapafaa
Fl=lalal

it ]

i ¥ = P
Oufisd 018 OUSE 0187 0998 O1Ed 0400 o091
[ipis

Aigan of Bugs Acrmas Salected YVerukons

018 018 01eT 0188 OveE 0100 011



How long do bugs live?

e 40-60% of bugs introduced In current
year, remaining are older
 Interesting facts can be gleaned easily

— How many bugs shared between versions
— Number of bugs introduced in a version



How long do bugs live?

* Bugs detected as born at version in which
they appear, death occurs at first version in
which they are no longer present

* Misses bugs that live only between versions
(Overestimates)

e Misses bugs that start between versions or
end well after versions (Underestimates)



How long do bugs live?

o Kaplan-Meier method used to estimate
censored data

* Expectancy calculated at 1.8yrs,
median 1.25yrs

e Code does harden
— Older files have lower error rate
— Newest quatrtile is 2x older quartile



How do bugs cluster?

 Metric: Variance to the mean

Arrangement




How do bugs cluster?

Many errors found to be isolated mistakes
Minimal to no clustering on most checkers

Null and Inull show minimal clustering

— Seems to imply incomplete knowledge of APIs or
“cut and paste”

Block shows more clustering

— Seems to imply that programmers are unaware of
this mistake



How do bugs cluster?

* Lots of hypotheses
— Inexperienced programmers
— Ignorance to rules or conventions
— Working code seen as correct code



Comparison with OpenBSD

||.. :ﬁ 145" 3 ].
umi | 0.617% -:I-EIILI
0.297% | 0. qrt 2. D06 1-1. 4716
0.183% | 1.004% 5. 064 4906

« Higher rate of errors OpenBSD
 Fewer occurrences of errors OpenBSD
* Very preliminary results



Contributions

Many errors/bugs fixed in Linux

Unusual to analyze only the bug
detection tool output, many studies
focus on the checkers

Surprised by lack of clustering results
Lots of questions and conjecture



Issues

— If a tree falls in the forest... ?
— If a bug Is squished before it bites... ?
— Are “errors” bugs... ?

— Only covers low level operations
— Interference, control, validation?
— Selection of code base?

— Accessibility?



